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NONADDITIVITY INDEX ORIENTED DECISION PREFERENCE 

INFORMATION REPRESENTATION AND CAPACITY 

IDENTIFICATION 

 

 
Abstract. The nonadditivity index is a competent indicator of depicting the 

kind and intensity of interaction among decision criteria. In this paper, we focus on 

using the nonadditivity index to represent the decision maker’s preference 

information as well as the process of transforming them into standard capacity. We 

first discuss the comparison and range representation forms of decision preference 

information in terms of nonadditivity index and update the inconsistency 

recognition models and adjustment strategies. Then we establish a nonadditivity 

index oriented multiple goal linear programming algorithm to find out the 

minimum deviation capacities with relatively less concerns and efforts on 

inconsistency adjustment. The illustrative example demonstrates the feasibility and 

flexibility of the proposed scheme and methods. 

Keywords: Fuzzy measure, Nonadditivity, Interaction index, Inconsistency, 

Capacity identification. 
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1. Introduction 

 

Capacity [5] is also called nonadditive measure [15,17] for its inherent 

nonadditivity property which corresponds to the additivity property of probability 

measure and meanwhile provides an explicit view of the interaction phenomenon 

among criteria. Generally speaking, additivity means the criteria are independent or 

with zero interaction; superadditivity means the criteria are complementary or with 
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positive interaction; subadditivity means the criteria are substitutive or with 

negative interaction [2,9]. 

As an indicator of directly depicting the kind and density of nonadditivity 

as well as of the associated interaction, nonadditivity index of capacity is proposed 

and discussed lately [18]. Compared to the traditional simultaneous interaction 

indices, the nonadditivity can reasonably describe the interaction among decision 

criteria and also has some good properties [20,21], such as the uniform range of 

different cardinalities, moderate compromise with the effect of dummy, extreme 

interaction property. Some applications of nonadditivity index in the context of 

capacity based decision making are introduced, see [19,22]. 

The capacity based decision maker’s preference information on the 

importance and interaction of decision criteria are usually provided in terms of the 

comparison and interval forms [1,10,12,16,24,25], e.g., the importance/interaction 

of a criteria subset A is larger than that of B with a threshold of δ, and the 

importance/interaction belongs to an interval [α,β]. Since the simultaneous 

interaction index has changing ranges for different cardinalities and confusing 

explanation of indices for 3 or more criteria in decision context, traditionally the 

preference information only apply for one criterion and two criteria [2,8,9,13]. 

However, by virtue of the uniform ranges and other mathematic properties of the 

nonadditivity index, these comparison and interval forms can be carried out for 

arbitrary cardinality subsets and the interaction degrees can be easily specified and 

corresponded to some regular ranges for all subsets as well [18,20,21]. 

It is inevitable that some inconsistencies exist among the decision maker’s 

preference information since the inherent uncertainty and complexity within the 

decision problem [2]. In the scheme of capacity-based decision analysis, the 

inconsistency recognition and adjustment approaches are generally resorted to the 

0-1 mixed linear programming model [6,7] or the multiple goal linear 

programming (MGLP) model [19,22]. The two categories of approaches both are 

competent to recognize the inconsistent constraints without much field knowledge 

but the MGLP models can further provide some adjustment suggestions based on 

the recognition results. However, we found that the previous MGLP model 

basically only discuss the boundary inconsistency in some situation. In this paper, 

we further update the MGLP model to more reasonably recognize the contradiction 

among the whole domain of preference constraints, and provide some flexible 

adjustment strategies and models accordingly. 

Furthermore, mainly inspired by the work of simultaneous interaction 

indices oriented capacity identification method given in [23], we also construct the 

nonadditivity index oriented capacity identification algorithm, which aims to use 

the coefficients in objective function of MGLP model to differentiate the ranges of 

the nonadditivity index and get the satisfied compromise result of all the variables. 

The major advantage of this algorithm is it can significantly reduce the efforts on 

recognizing and adjusting inconsistency by only remaining the comparison 

constraints of singletons’ indices. 
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This paper is organized as follows. After the introduction, we briefly 

present background knowledge of the capacity and nonadditivity index in Section 

2. In Section 3, we discuss the inconsistency recognition models and adjustment 

strategies. Section 4 is for the nonadditivity index oriented algorithm. In section 5, 

we use an illustrative example to present the proposed model and algorithm in 

detail. Finally, we conclude the paper in Section 6. 

 

2. Preliminaries 
 

Let N = {1,2,...,n}, n> 2, be the decision criteria set, P(N) be the power set 

of N, and |S| be the cardinality of subset S⊆N. 

Definition 1. [5,12,17] A capacity on N is a set function µ : P(N) → [0,1] 

such that 

(1)µ(∅) = 0, µ(N) = 1; (boundary condition) 

(2)∀A, B ⊆ N, A ⊆ B implies μ(A)≤μ(B). (monotonicity condition) 

The monotonicity condition of capacity reveals the essential property about 

decision criteria to the decision problem, i.e. the importance of a criteria subset 

cannot decrease when new criteria are added [3,12].One of the explicit 

characteristics stems from the monotonicity w.r.t. inclusion subsets is the 

nonadditivity w.r.t. disjoint subsets that leads to the alternative name of capacity, 

the nonadditive measure. 

Definition 2. [18] A capacity 𝜇 on 𝑁 is said to be ⋆-additive within 𝑆 ⊆ 𝑁, 

if𝜇(𝐴 ∪ 𝐵) =
⋆

𝜇(𝐴) + 𝜇(𝐵), ∀𝐴, 𝐵 ⊆ 𝑆, 𝐴, 𝐵 ≠ ∅, 𝐴 ∩ 𝐵 = ∅,where “=
⋆

” stands for 

“= (resp. ≥ , ≤, > and <)”, “⋆-additive” stands for “additive (resp. superadditive, 

subadditive, strict superadditive, and strict subadditive)”. 

Generally speaking, superadditivity means the complementary or positive 

interactions of decision criteria while the subadditivity means the substitutive or 

negative interactions. The traditional simultaneous interaction index, like the 

Möbius representation [4] and the Shapley interaction indices [11], can not 

correctly reflect the above intuitive judgment, see some counterexamples in 

[18,21]. In view of this major shortcoming of simultaneous interaction index and 

its other inconveniences in application, e.g., the changing ranges of different 

cardinalities, we proposed nonadditivity index which has some good mathematical 

characteristics and intuitive interpretations [18]. 

Definition 3. [18] The nonadditivity index of a subset A⊆N w.r.t. µ is 

defined as 

𝑛𝜇(𝐴) = 𝜇(𝐴) −
1

2|𝐴|−1 − 1
∑ 𝜇(𝐶)

𝐶⊂𝐴

.                                              (1) 

Proposition 1. For a nonadditivity index 𝑛𝜇of a µ on N, 

(1) If𝜇is ⋆-additive within𝑆 ⊆ 𝑁, then𝑛𝜇(𝐴) =
⋆

0, ∀𝐴 ⊆ 𝑆, |𝐴| ≥ 2; 

(2) −1 ≤ 𝑛𝜇(𝐴) ≤ 1, ∀𝐴 ⊆ 𝑁; 
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(3) 𝑛𝜇(𝐴) = 1  ⇔  𝜇(𝐵) = 0, ∀𝐵 ⊂ 𝐴, and 𝜇(𝐴) = 1; 

(4) 𝑛𝜇(𝐴) = −1  ⇔  𝜇(𝐵) = 1, ∀𝐵 ⊆ 𝐴, and 𝐵 ≠ ∅; 

The item (1) means that the signs of nonadditivity index are in accordance 

with the types of interactions. The item (2) show the ranges of nonadditivity 

indices are normalized into the uniform intervals [−1,1], so different cardinality 

indices can be directly compared. The items (3) and (4) respectively give the 

positive and negative extreme interaction cases, which is also easy to understand in 

the context of decision making. 

Similar to the Möbius representation [4] as well as the Shapley interaction 

index [14], the nonadditivity index is also a representation of capacity [18]. 

Proposition 2. A capacity µ on N can be represented through nonadditivity 

index 𝑛𝜇as 

𝜇(𝐴) = 𝑛𝜇(𝐴) + ∑ ∑ ∏
|𝐴|−𝑗

2𝑗−1

|𝐴|−1
𝑗=𝑖

|𝐴|−1
𝑖=|𝐶|𝐶⊂𝐴 𝑛𝜇(𝐶), ∀𝐴 ⊆ 𝑁.                     (2) 

From the definition of capacity and the above proposition, we can have the 

following result [19,20]. 

Proposition 3. The coefficients set { 𝑛𝜇 (A)}A⊆N corresponds to the 

nonadditivity index of a capacity on N iff 

(1) 𝑛𝜇(∅) = 0, 𝑛𝜇(𝑁) + ∑ ∑ ∏
𝑛−𝑗

2𝑗−1
𝑛−1
𝑗=𝑖

𝑛−1
𝑖=|𝐶|𝐶⊂𝑁 𝑛𝜇(𝐶) = 1; 

(2) 𝑛𝜇(𝐴 ∪ {𝑖}) + ∑ ∑ ∏
|𝐴|+1−𝑗

2𝑗−1

|𝐴|
𝑗=𝑖

|𝐴|
𝑖=|𝐶|𝐶⊂𝐴∪{𝑖} 𝑛𝜇(𝐶) − 𝑛𝜇(𝐴) 

   − ∑ ∑ ∏
|𝐴|−𝑗

2𝑗−1

|𝐴|−1
𝑗=𝑖

|𝐴|−1
𝑖=|𝐶|𝐶⊂𝐴 𝑛𝜇(𝐶) ≥ 0, ∀𝑖 ∈ 𝑁, 𝐴 ⊆ 𝑁\{𝑖}. 

The above two propositions show the nonadditivity index, as a one-to-one 

mapping of capacity, can be applied as an alternative index to represent the 

capacity as well as its related conceptions and models. 

 

3. The preference representation and adjust strategies 

 

3.1 The comparison and interval representation forms 

 

As mentioned in Introduction, the decision maker’s preference information 

on the importance and interaction of decision criteria are usually provided in terms 

of the comparison and interval forms [12,13]. For the comparison form, we can 

directly compare the nonadditivity indices with different cardinalities, e.g., we can 

say the index of subset {1,2,3} is greater than {1,2,3,4} with threshold of 0.1, 

which means the criteria 4 is likely substitutive with criteria 1, 2 and 3. For the 

interval range, we can divide the range of [−1,1] into some sub intervals to show 

the density of interaction. For example, by equivalent divisions, we can just use the 

intervals 

[−1,−0.75),[−0.75,−0.5),[−0.5,−0.25) and [−0.25,0) 

to show the extremely, strongly, fairly and slightly negative interactions, and use 

[1,0.75),[0.75,0.5),[0.5,0.25) and [0.25,0) 
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to show the corresponding positive interactions, and the zero interaction just means 

the nonadditivity index is 0. For convenience, we just call this range division form 

as the 9-interval interaction scale. Since the nonadditivity index is a liner 

representation of capacity, the decision maker’s preference information with 

comparison and interval forms are essentially the linear constraints with respect to 

capacity [1,2,25]. 

 

3.2 The MGLP based inconsistency check method 

 

It is inevitable that some inconsistencies exist among the decision maker’s 

preference information since the inherent uncertainty and complexity within the 

decision problem and environment as well. 

One of the inconsistency check approaches is based on the multiple goal 

linear programming (MGLP) [2,19,22], see the Algorithm 1.  

 

Algorithm 1: MGLP based Inconsistency Recognition Method 
Step 1. Construct the initial preference information based on the MGLP 

model. We need to transform each preference constraint constructed into a 
goal constraint by introducing the positive and negative deviation variables, 
set the objective function as the minimization of sum of all deviation 
variables, and meanwhile keep the boundary and monotonicity conditions of 
capacity as the hard constraints of the MGLP model. 

Step 2. Identify the inconsistency degrees of each constraint. Solving the 
MGLP model, we call the optimal negative (resp. positive) deviation of the 
initial constraint with "≥" (resp. "≤") direction as its inconsistency degree. If 
the inconsistency degree is nonzero, then the initial constraint is the 

inconsistent one. 
 

Remark 1. Suppose we have one preference constraint, 𝑛𝜇(𝐴) − 𝑛𝜇(𝐵) ≥

(≤)0.1, which means the nonadditivity index of subset 𝐴 is greater (less) than that 

of 𝐵 with threshold of 0.1, we can introduce the positive and negative deviations 

variables, 𝑑+  and 𝑑− , where 𝑑+, 𝑑− ≥ 0  and 𝑑+ × 𝑑− = 0  and get the goal 

constraint as 

𝑛𝜇(𝐴) − 𝑛𝜇(𝐵) − 𝑑+ + 𝑑− = 0. 

Furthermore, if the initial preference constraint’s direction is "=", then we just 

represent this constraint into two constraints by respectively changing the direction 

as  “≥” and “≤”. Generally, we can have the following MGLP model [19,22]: 

min  ∑ 𝑑𝑟
+

𝑝

𝑟=1

+ 𝑑𝑟
− 

s.t. the boundary and monotonicity of capacity, (3) 

the goal constraints transformed from the preference information, 
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where  𝑑𝑟
+, 𝑑𝑟

− ≥ 0, 𝑝 is the amount of goal constraints in the above model. It 

should be mentioned that all the nonlinear constraints, 𝑑𝑟
+ × 𝑑𝑟

− = 0 , can be 

removed for the objective function is to minimize and the model is just a linear 

programming. 

 

3.3 Inconsistency adjustment strategies 

 

For the inconsistent preference constraint, we can just remove them from 

the constraint set or adjust them into consistent case. One inconsistency adjust 

strategy [19], called strategy S-I for convenience, is 

S-I:to subtract the optimal negative deviation from (resp. plus the optimal 

positive deviation to) the right hand side of the inconsistent constraint if it is with 

“≥” (resp. “≤”) direction. 

Alternatively, we can change the objective function of Model 3 by only 

keeping the positive and negative deviation variables of the inconsistent constraints 

(i.e., remove those variables of the consistent constraints) and meanwhile set the 

consistent constraints as strict equations (i.e., change all the directions of “≥” or 

“≤” into “=”). One can figure out this changed model can get the same optimal 

solution of Model 3 because the minimum of the deviation of the consistent 

constraints are all zero, i.e., the consistent constraints are just strict equation with 

the optimal solutions of models 3. That is Model 3 only check the boundary 

inconsistency case of the preference constraints. 

Actually, we can further update the Model 3 to be more flexible and 

reasonable as follows: 

min  ∑ 𝑑𝑟
−

𝑟∈𝑃≥

+ ∑ 𝑑𝑟
+

𝑟∈𝑃≤

s. t. the boundary and monotonicity of capacity,

the goal constraints transformed from the preference information,

(4) 

where 𝑑𝑟
+, 𝑑𝑟

− ≥ 0, 𝑟 = 1, . . . , 𝑝, 𝑝 is the amount of goal constraints, 𝑃≥ and 𝑃≤ are 

the number set of the preference goal constraints with the directions of ≥ and ≤, 

respectively. That is, we only concern the minimum of positive deviation variable 

𝑑−  for the “ ≥ ” type of constraint, and 𝑑+  for the “ ≤ ” type of constraint. 

Obviously, if the minimum of the objective function in Model 4 is zero, then all the 

constraints are consistent. 

Similarly, if get the optimal solutions of deviation variables, we can also 

change the objective function of Model 4 as only the sum of the positive and 

negative deviation variables of the inconsistent constraints and meanwhile set the 

consistent constraints as their initial states (not the goal constraints). This changed 

model still has same set of optimal solutions of initial model 4, which is also same 

to the domain of feasible capacities of S-I adjusted preference constraints. 

The strategy S-I works in any situation even when no field knowledge are 

available and it also can be executed simultaneously to all the inconsistent 
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constraints [19, 22]. However, if there is much available field knowledge of the 

applied indices or relatively clear estimation on the preference constraints, it is 

better to try some more flexible adjustment strategies. 

Generally, from Eqs. (1) and (2), we can obtain that the nonadditivity 

index of a subset is in proportion to its capacity value and in inverse proportion to 

its proper subsets’ capacity values and then in inverse proportion to its proper 

subsets’ nonadditivity index values. That is, for a given 𝐴 ⊆ 𝑁 , if we aim to 

increase the value of 𝑛𝜇(𝐴), we can try to increase the value of 𝜇(𝐴) or decrease 

the values of 𝜇(𝐵), 𝐵 ⊂ 𝐴, or 𝑛𝜇(𝐵), 𝐵 ⊂ 𝐴 as well.Technically, we can 

S-II: use the linear programming to help us obtain the range of an 

inconsistent constraint based on the consistent preference constraints and then 

according to the obtained range, some flexible adjustment strategies can be 

applied specifically. 

Since the constraints in Models 3 and 4, including the boundary and 

monotonicity conditions and the decision maker’s preference constraints, are all the 

linear ones, so the feasible range of any constraint must be a closed interval [2]. 

Furthermore, in models 3 and 4, its objective function is basically a 

weighted objective function where all the preference constraints are treated with 

the same weight 1. In practice, it is possible for the decision maker to give his/her 

priority preference on those preference constraints. Suppose the preference 

constraints are divided into 𝑚  priority level sets: {𝑃1, 𝑃2, . . . , 𝑃𝑚}  in descending 

order, where the constraint in 𝑃𝑖 has absolutely higher priority than that in 𝑃𝑖+1. We 

can separately apply the inconsistency check and adjustment to each priority level 

set in sequence, or just adopt the following preemptive MGLP model to get the 

optimal capacities. 

min  ∑ 𝐾

𝑟∈𝑃≥

(𝑟)𝑑𝑟
+ + ∑ 𝐾

𝑟∈𝑃≤

(𝑟)𝑑𝑟
−

s. t. the boundary and monotonicity of capacity,

the goal constraints transformed from the preference information,

 (5) 

where 𝑃≥  and 𝑃≤  are same as in Model 4, 𝐾(𝑟)  is the priority level function: 

{1, . . . , 𝑝} → {𝑘1, . . . , 𝑘𝑚}, 𝑚 is the number of priority levels, and 𝑘𝑖 >> 𝑘𝑖+1, 𝑖 =
1, . . . , 𝑚 − 1. The value of 𝑘𝑖 can be identified empirically in real problem by the 

decision maker or analyst. Then, based on the optimal deviation variables, we can 

adopt the strategies S-I or S-II to adjust the inconsistent constraint and get a 

feasible domain of compatible capacities. 

 

4. The nonadditivity indices oriented capacity identification method 

 

Inspired by the fact that the set of optimal capacities of MGLP model is 

essentially same as the feasible domain after applied adjustment strategy S-I as 

well as the study of the simultaneous interaction indices oriented capacity 
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identification method [23], in this section we construct the nonadditivity index 

oriented MGLP model with less consistency check effort and manage to obtain the 

desired capacity that most close to the decision maker’s preference expectation. 

That is, we construct the approach of using the coefficients of the selected 

deviation variables or equally the nonadditivity indices in the objective function of 

MGLP to present the preference information of decision maker on the importance 

or interaction of criteria. 

As shown by the Model NSIIO in [23], if the objective is to maximize, the 

basic principle of identifying the coefficients is that the higher the preference 

constraint’s expected value is, the greater its corresponding coefficient in objective 

function will be [23]. Similarly, we can construct the following Multiple Goal Non-

linear Programming. 

Max 𝑧 = ∑ 𝑤𝐴

𝐴∈𝐾+

𝑑𝐴
+ + ∑ 𝑤𝐴

𝐴∈𝐾−

𝑑𝐴
− + ∑ 𝑤𝐴

𝐴∈𝐾0

(𝑑𝐴
+ + 𝑑𝐴

−)

{

the boundary and monotonicity conditions,
the comparison form of perference constriants,

𝑛𝜇(𝐴) − 𝑑𝐴
+ + 𝑑𝐴

− = 0, 𝑑𝐴
+, 𝑑𝐴

− ≥ 0, 𝑑𝐴
+ × 𝑑𝐴

− ≠ 0, 𝐴 ∈ {𝐾+ ∪ 𝐾− ∪ 𝐾0},

(6) 

where 𝐾+, 𝐾−, 𝐾0 are the sets of subsets whose nonadditivity indices are supposed 

to be positive, negative and zero, the coefficients 𝑤𝐴 according to the rule of [23], 

in objective function is set as -9, -7, -5, -3, 1, 3, 5, 7 and 9 if the nonadditivity 

index is expected to be extremely negative, strongly negative, fairly negative, 

slightly negative, zero, slightly positive, fairly positive, strongly positive and 

extremely positive respectively. 

However, this model has some disadvantages. First, the model is non-linear 

model because the nonlinear constraints, 𝑑𝐴
+ × 𝑑𝐴

− ≠ 0,  can not be removed for the 

maximization objective function. Second, the coefficients are kind of fixed and too 

empirical to ensure the corresponding nonadditivity indices follow into their 

expected intervals like the 9-interval interaction scale talked in subsection 3.1. 

Third, the comparison form of constraints are still the hard constraints among 

which any inconsistency will lead to the infeasible solution for Model 6. 

In the following, we update this model to a more flexible algorithm which 

is based on a minimization MGLP model and then manage to close the decision 

preference expectations of the nonadditivity indices to the maximum extent. The 

minimization MGLP model is given as: 

Min 𝑧 = ∑ (𝑑𝐴
+ + 𝑑𝐴

−)

𝐴∈𝐾0

+ ∑ 𝜆𝐴

𝐴∈𝐾+∪𝐾−

𝑛𝜇(𝐴)

{

the boundary and monotonicity conditions,

the comparison form of perference of 𝐬𝐢𝐧𝐠𝐥𝐞𝐭𝐨𝐧𝐬′𝐧𝐨𝐧𝐚𝐝𝐝𝐢𝐭𝐢𝐯𝐢𝐭𝐲 𝐢𝐧𝐝𝐢𝐜𝐞𝐬,

𝑛𝜇(𝐴) − 𝑑𝐴
+ + 𝑑𝐴

− = 0, 𝑑𝐴
+, 𝑑𝐴

− ≥ 0, 𝐴 ∈ 𝐾0,

(7) 

where𝐾+, 𝐾− and 𝐾0 are same as Model 6, λA is set to be (called as Rule R-II) 

−1 − 9δ, −1 − 7δ, −1 − 5δ, −1 − 3δ, 1 + 3δ, 1 + 5δ, 1 + 7δand 1 + 9δ 
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if the nonadditivity index of A is supposed to be extremely positive, strongly 

positive, fairly positive, slightly positive, slightly negative, fairly negative, strongly 

negative and extremely negative respectively, where δ >0 is a scale variable, see its 

possible range and purpose in Algorithm 2. 

 
Algorithm 2: The Nonadditivity Index oriented MGLP Algorithm. 

 
Establish the comparison preference constraints and interval range constraints 

by using the nonadditivity indices. 

Construct the base MGLP model according to Model 7, where the main 

task is to use the coefficient reasonably present the comparison and 

interval forms of preference information. 

for δ in {1/100, 2/100, ...,1} and {3/2,4/2,...,50} do 

Solve the MGLP model, get the optimal capacity, µδ, and its 

nonadditivity indices, denoted as 𝑛𝛿∗
= (𝑛𝛿({1}),𝑛𝛿 ({2}),...,𝑛𝛿 (N)). 

Calculate the sum of the divergences of all the constraints w.r.t. 𝑛𝛿, 

denoted as dδ = ∑ 𝑑𝑟
𝛿𝑝

𝑟=1 , where p is the amount of all preference 

constraints,𝑑𝑟
𝛿 is the diver-gence of constraint 𝑟 which is defined as 0 if 

the constraint holds with the optimal nonadditivity indices, otherwise the 

absolute between the left and right hand sides with the optimal 

nonadditivity indices.  

end 

Get 𝑑𝛿∗
= min𝛿𝑑𝛿, and return the corresponding 𝜇𝛿∗

 and 𝑛𝛿∗
. 

 
Remark 2. We should mention that we give the expected positive 

(negative) nonadditivity index a negative (positive) coefficient for the objective 

function of Model 7 is to minimize, and not to maximum as in Model 6. 

Remark 3. One can notice that the Model 7 only includes the comparison 

constraints of singletons’ nonadditivity indices, not for the comparison about 

higher order subsets. The main reason is, on the one hand there is a relatively large 

freedom for the singletons’ indices to avoid inconsistency and it is also relatively 

easy to check and adjust if some inconsistency exists among them; on the other 

hand, we can transform the related comparison form constraints of higher order 

subsets into the range forms by virtue of the uniform range and good decision 

explanation of nonadditivity index, which can really reduce the inconsistency 

recognition effort exerting on the decision maker or analyst. For example, for the 

comparison form constraint: 𝑛𝜇(𝐵) − 𝑛𝜇(𝐶) ≥ 0.1, there may be three cases of 

decision maker’s judgment on the signs of 𝑛𝜇(𝐵) and 𝑛𝜇(𝐶): (1) Both are positive, 

(2) Both are negative, and (3) 𝑛𝜇(𝐵) is positive and 𝑛𝜇(𝐶) is negative. For case (1) 

𝑛𝜇(𝐵) and 𝑛𝜇(𝐶) can be assigned into different intervals, like 𝑛𝜇(𝐵) is strongly 

positive and 𝑛𝜇(𝐶) is fairly positive and they were given two different coefficients 
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in objective function −1 − 7𝛿 and −1 − 5𝛿 respectively, or they are assigned in 

one same interval, e.g., both are fairly positive and in order to show their 

difference, we can give their coefficients as −1 − 5𝛿  and −1 − 4𝛿  respectively. 

Case (2) is similar to case (1). For case (3), we can assign 𝑛𝜇(𝐵)  as slightly 

positive and 𝑛𝜇(𝐶) as slightly negative for threshold 0.1 is not relatively large 

compared to the range [-1, 1] of nonadditivity index, then their coefficients in 

objective function can be −1 − 3𝛿 and 1 + 3𝛿. 

Remark4.The coefficient λ or equally δ are identified by the decision 

maker or analyst empirically, where the coefficients of zero additivity indices were 

taken as the base, 1, and keep steady. And the min𝛿𝑑𝛿in Algorithm 2 is to get the 

least sum of inconsistent deviations of all the range form constraints in Model 7, 

accordingly the  𝜇𝛿∗
 or𝑛𝛿∗

is just the minimum deviation capacity or nonadditivity 

index that competently represents the decision maker’s preference expectation. 

 

5. An Illustrative Example 

 

5.1 The inconsistency check and adjustment strategies 

Suppose the decision problem involves five decision criteria, that is the 

criteria set is N = {1,2,3,4,5}. 

We begin with some simple comparison constraints to show and compare 

the different models and strategies. Assume the decision maker thinks that the 

importance of the five single criteria should be: 

(1) criterion 1 is no less important that criterion 4; 

(2) criterion 2 is more important than criterion 1 with threshold of 0.1; 

(3) criterion 2 is more important than criterion 3 with threshold of 0.1; 

(4) criterion 3 is no less important that criterion 5; 

(5) criterion 4 is more important than criterion 5 with threshold of 0.1. 

If we describe the importance of criterion by its capacity value or equally 

the nonadditivity index, we can have: 

 
𝑛𝜇({1}) − 𝑛𝜇({4}) ≥ 0;

𝑛𝜇({2}) − 𝑛𝜇({1}) ≥ 0.1;

𝑛𝜇({2}) − 𝑛𝜇({3}) ≥ 0.1;

𝑛𝜇({3}) − 𝑛𝜇({5}) ≥ 0;

𝑛𝜇({4}) − 𝑛𝜇({5}) ≥ 0.1.

(8) 

 

According to Model 3, we have 
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min  ∑ 𝑑𝑟
+

5

𝑟=1

+ 𝑑𝑟
−

s. t. the boundary and monotonicity of capacity,

𝑛𝜇({1}) − 𝑛𝜇({4}) − 𝑑1
+ + 𝑑1

− = 0,

𝑛𝜇({2}) − 𝑛𝜇({1}) − 𝑑2
+ + 𝑑2

− = 0.1,

𝑛𝜇({2}) − 𝑛𝜇({3}) − 𝑑3
+ + 𝑑3

− = 0.1,

𝑛𝜇({3}) − 𝑛𝜇({5}) − 𝑑4
+ + 𝑑4

− = 0,

𝑛𝜇({4}) − 𝑛𝜇({5}) − 𝑑5
+ + 𝑑5

− = 0.1,

                                    (9) 

where 𝑑𝑟
+, 𝑑𝑟

− ≥ 0 , 𝑟 = 1,2,3,4,5 . Solving this model, we have all the all the 

optimal solutions of deviation variables are zero except 𝑑1
−∗ = 0.1, which means 

the constraint 𝑛𝜇({1}) − 𝑛𝜇({4}) ≥ 0   is "inconsistent" in this context. According 

to the strategy S-I, we can subtract 𝑑1
−∗ from its right hand side and get the adjusted 

preference constraints as: 

𝑛𝜇({1}) − 𝑛𝜇({4}) ≥ −𝟎. 𝟏;

𝑛𝜇({2}) − 𝑛𝜇({1}) ≥ 0.1;

𝑛𝜇({2}) − 𝑛𝜇({3}) ≥ 0.1;

𝑛𝜇({3}) − 𝑛𝜇({5}) ≥ 0;

𝑛𝜇({4}) − 𝑛𝜇({5}) ≥ 0.1.

                                                              (10) 

 

Basically, Eq. (9) is equal to the following MGLP: 

min 𝑑1
+ + 𝑑1

−

s. t. the boundary and monotonicity of capacity,

𝑛𝜇({1}) − 𝑛𝜇({4}) − 𝑑1
+ + 𝑑1

− = 0,

𝑛𝜇({2}) − 𝑛𝜇({1}) = 0.1,

𝑛𝜇({2}) − 𝑛𝜇({3}) = 0.1,

𝑛𝜇({3}) − 𝑛𝜇({5}) = 0,

𝑛𝜇({4}) − 𝑛𝜇({5}) = 0.1,

                           (11) 

where 𝑑𝑟
+, 𝑑𝑟

− ≥ 0, 𝑟 = 1,2,3,4,5.  One can figure out that Eqs. (9) and (11) only 

check the inconsistency of the boundary case of Eq. (9) and lead to a unreasonable 

adjusted result, see Eq. (10). 

Actually, the constraints in Eq. (8) are mutually compatible or Eq. (8) has a 

feasible domain of capacity. By using the updated model, Model 4, we can 

construct the following MGLP:  
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min  ∑ 𝑑𝑟
−

5

𝑟=1

 

s.t. the constraints of Eq. (9)                                                                    (12) 

Solving this MGLP, we have the optimal negative deviation variables are all zero, 

which means Eq.(8) is consistent. The Model (12) has multiple optimal solutions 

and the set of its optimal capacities is basically equal to the domain of feasible 

capacities of Eq. (8). But the Eq. (8) also has some redundant information. For 

example, one can figure out that for any feasible capacity, we can have 𝑛𝜇({2}) −

𝑛𝜇({3}) ≥  0.2 >0.1, which means the third constraint in Eq. (8) has some 

redundancy. This redundancy can be reflected by one optimal solution of positive 

deviation variables of Model (12) where 𝑑3
+∗ = 0.1. 

     Now, we further add the following interval constraints: 
𝑛𝜇({1,2,3}) ≥ 0.75;

𝑛𝜇({1,2,3}) ≤ 1;

𝑛𝜇({1,2,4}) ≥ 0.5;

𝑛𝜇({1,2,4}) ≤ 0.75;

𝑛𝜇({2,3,4}) ≥ 0.5;

𝑛𝜇({2,3,4}) ≤ 0.75;

𝑛𝜇({1,2,3,4}) ≥ −0.5;

𝑛𝜇({1,2,3,4}) ≤ −0.25;

𝑛𝜇({2,3,4,5}) ≥ −0.75;

𝑛𝜇({2,3,4,5}) ≤ −0.5.

                                               (13) 

That is, the interactions of  𝑛𝜇({1,2,3}), 𝑛𝜇({1,2,4}), 𝑛𝜇({2,3,4}), 𝑛𝜇({1,2,3,4}) 

and 𝑛𝜇({2,3,4,5}) are expected to be extremely positive, strongly positive, strongly 

positive, fairly negative and strongly negative, respectively. According to Model 4, 

we can transform constraints of (8) and (13) into goal constraints and construct the 

following MGLP: 

min  ∑ 𝑑𝑟
−

𝑟∈𝑃≥
+ ∑ 𝑑𝑟

+
𝑟∈𝑃≤

s. t. the boundary and monotonicity of capacity,

𝑛𝜇({1}) − 𝑛𝜇({4}) − 𝑑1
+ + 𝑑1

− = 0,

  . . .
𝑛𝜇({1,2,3}) − 𝑑6

+ + 𝑑6
− = 0.75,

  . . .
𝑛𝜇({2,3,4,5}) − 𝑑15

+ + 𝑑15
− = −0.5,

(14) 

where 𝑃≥ = {1,2,3,4,5,6,8,10,12,14} , 𝑃≤ = {7,9,11,13,15} .  Solving this model, 

we have the optimal objective function value is 0.6, which means there are some 

inconsistencies among the constraints. More specifically, 𝑑5
−∗ = 0.05  for 
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constraints whose indices are in 𝑃≥and 𝑑13
+∗ = 0.2642858, 𝑑15

+∗ = 0.2857143 for 

constraints whose indices are in 𝑃≤, which means the constraints 5, 13 and 15 are 

inconsistent. By adopting the strategy S-I, we can adjust these three initial 

constraints as: 

𝑛𝜇 ({4}) − 𝑛𝜇 ({5}) ≥0.1−0.05 = 0.05, 

𝑛𝜇 ({1,2,3,4}) ≤0.25+0.2642858 = 0.0142858                                  (15) 

𝑛𝜇 ({2,3,4,5}) ≤0.5+0.2857143 = −0.2142857 

Then we use the Model 4 to check again and get that all the constraints are 

consistent. We’d like to mention that the set of optimal capacities of Eq. (14) is 

same to the domain of feasible capacities given by the adjusted constraints and also 

same to set of optimal capacities of MGLP model with adjusted constraints. 

We illustrate the strategy S-II for Eq. (14). Since Eq. (8) is consistent, we 

can first check minimum and maximum of 𝑛𝜇 ({1,2,3,4}) by using the following 

linear programming: 

min or max 𝑛𝜇 ({1,2,3,4}) 

s.t. the boundary and monotonicity of capacity,                                                       

(16)  

Eqs.(8) and (13) (meanwhile remove the last four constraints, 

which involve 𝑛𝜇 ({1,2,3,4}) and 𝑛𝜇 ({2,3,4,5}) ). 

Solving the above linear programming, we have min 𝑛𝜇({1,2,3,4}) =

0.01428571and max𝑛𝜇({1,2,3,4}) = 0.5404762. Suppose the decision maker, in 

view of this, determine to adjust the interaction of{1,2,3,4} as slightly positive, i.e., 

𝑛𝜇({1,2,3,4}) ≥ 0and 𝑛𝜇({1,2,3,4}) ≤ 0.25. Further taking account of these above 

two constraints, we can get the minimum and maximum of {2,3,4,5}  are -

0.2190476 and 0.7452381 respectively. Then decision maker may adjust the 

interaction of {2,3,4,5}  as slightly negative, i.e., 𝑛𝜇({2,3,4,5}) ≥ −0.25 and 

𝑛𝜇({2,3,4,5}) ≤ 0.  

We can further try the preemptive MGLP model. Suppose the decision 

maker think the constraints in Eq. (8) shouldhave the 𝑃2 level priority. According 

to Model (5), we can set 𝐾(𝑟) = 𝑘1 for 𝑟 = 1, . . .5 and 𝐾(𝑟) = 𝑘2for 𝑟 = 6, . . .15. 

If set 𝑘1 = 100 and 𝑘2 = 1, we can get the following optimal deviation variables 

are not zero:𝑑6
−∗ = 0.01666667 for constraints whose indices are in 𝑃≥and𝑑13

+∗ =
0.30714286, 𝑑15

+∗ = 0.28571429 for constraints whose indices are in 𝑃≥ ,which 

means the constraints 6, 13 and 15 are inconsistent. Actually, if we decrease 𝑘1 

from 100 to 2 and keep 𝑘2 as 1, we can also get the above result of inconsistency. 

If we further decrease the value of 𝑘1, the inconsistency case can change, e.g., if 

𝑘1 = 1.9 , the result is 𝑑5
−∗ = 0.01 , 𝑑13

+∗ = 0.3042857  and 𝑑15
+∗ = 0.2857143 , 

which is a similar case of Model 14. 
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5.2 The nonadditivity index oriented algorithm 

 

Now besides the constraints Eqs. (8) and (13), we further add the following 

preference constraints: 

𝑛𝜇({2,3}) = 0

𝑛𝜇({1,3,4}) = 0

𝑛𝜇({1,2,4,5}) ≥ −0.25

𝑛𝜇({1,2,4,5}) ≤ 0

𝑛𝜇({1,2,3,4,5}) ≥ −0.5

𝑛𝜇({1,2,3,4,5}) ≤ −0.25

                                               (17) 

Then according to Model 7,for we can get the following MGLP: 

 

min 𝑧 = 𝑑1
+, 𝑑1

−, 𝑑2
+, 𝑑2 

− + (−1 − 9𝛿)𝑛𝜇 ({1,2,3}) 

+(−1 − 7𝛿)𝑛𝜇 ({2,3,4}) + (−1 − 7𝛿)𝑛𝜇 ({1,2,4}) 

+(1 + 5𝛿)𝑛𝜇 ({1,2,3,4}) + (1 + 7𝛿)𝑛𝜇 ({2,3,4,5})           (18) 

+(1 + 3𝛿)𝑛𝜇 ({1,2,4,5} + (1 + 5𝛿)𝑛𝜇 ({1,2,3,4,5} 

 

1 1

2 2

 (8)

the boundary and monotonicity conditions,

Eq. ,
. .

({2,3}) 0,

({1,3,4}) 0,

  s t
n d d

n d d





 

 






  
     

where 𝑑1
+, 𝑑1

−, 𝑑2
+, 𝑑2

− ≥ 0.  

By executing the Algorithm 2, we have the sums of optimal inconsistent 

deviations, as shown in Table 1. One can figure out that 𝑑𝛿∗
= min𝛿𝑑𝛿 =

0.8366667, where 𝛿∗ = 1/100 ∼ 6/100. Their corresponding nonadditivity index 

and capacity values are listed in Tables 2 and 3. From the former table we can see 

the nonadditivity indices are relatively consistent with the decision preference; in 

the latter table, the capacity values show more extremely trend, e.g., almost the 3 or 

higher order subsets’ capacities are 1, which mainly because in the one hand the 

nonadditivity indices of Eq. (8) are required as extremely positive or strongly 

negative, on the other hand, nonadditivity index oriented model has kind of trend to 

obtain the extreme solution, because of the fact of relatively less number of the 

hard constraints. 
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Table 1: The values of δ and the corresponding sum of deviations 
δ 1/100~6/100 7/100~28/100 29/100~57/100 58/100~1 3/2~50 

dδ 0.8366667 0.9095238 0.9809524 1.2380952 1.7285714 

 

Table 2: The optimal nonadditivity index on criteria set {1,2,3,4,5} 
A 𝑛𝜇(𝐴) A 𝑛𝜇(𝐴) A 𝑛𝜇(𝐴) A 𝑛𝜇(𝐴) 

∅ 0 {1,4} 0.1 {1,2,3} 0.7333 {2,4,5} 0.1667 

{1} 0.1 {1,5} 0.9 {1,2,4} 0.6333 {3,4,5} 0.2 

{2} 0.2 {2,3} 0.0001 {1,2,5} 0.1667 {1,2,3,4} 0.2857 

{3} 0 {2,4} -0.1 {1,3,4} 0.0001 {1,2,3,5} -0.0286 
{4} 0.1 {2,5} 0.8 {1,3,5} 0.2667 {1,2,4,5} -0.1571 
{5} 0 {3,4} 0.2 {1,4,5} 0.1667 {1,3,4,5} -0.0286 

{1,2} -0.1 {3,5} 1 {2,3,4} 0.6667 {2,3,4,5} -0.1429 
{1,3} 0.0001 {4,5} 0.9 {2,3,5} 0.2 {1,2,3,4,5} -0.3333 

 Table 3: The optimal capacity on criteria set {1,2,3,4,5} 
A 𝜇(𝐴) A 𝜇(𝐴) A 𝜇(𝐴) A 𝜇(𝐴) 

∅ 0 {1,4} 0.3 {1,2,3} 1 {2,4,5} 1 

{1} 0.1 {1,5} 1 {1,2,4} 1 {3,4,5} 1 

{2} 0.2 {2,3} 0.2 {1,2,5} 1 {1,2,3,4} 1 
{3} 0 {2,4} 0.2 {1,3,4} 1 {1,2,3,5} 1 

{4} 0.1 {2,5} 0.3 {1,3,5} 0.2667 {1,2,4,5} 1 

{5} 0 {3,4} 0.3 {1,4,5} 1 {1,3,4,5} 1 
{1,2} 0.2 {3,5} 1 {2,3,4} 1 {2,3,4,5} 1 

{1,3} 0.1 {4,5} 1 {2,3,5} 1 {1,2,3,4,5} 1 

 

6. Conclusions 

The nonadditivity index has some relatively good mathematical 

characteristics and a fairly suitable explanation in decision making context, which 

make it more reasonable to directly compare the interactions with different orders’ 

subsets and to easily arrange the interaction density into regular ranges. The 

updated inconsistency recognition MGLP models and adjustment strategies help to 

represent the decision maker’s preference information more correctly and 

efficiently. Furthermore, the nonadditivity index oriented capacity identification 

method can find out some capacities that rather close the decision maker’s 

preference with relatively less efforts on the inconsistency checking and 

adjustment. The inconsistency recognition and capacity identification methods and 

strategies discussed in this paper can provide a useful reference for representing the 

decision maker’s preference information by other representations of capacity, like 

the bipartition interaction index and nonmodularity index. The further research task 

can focus on the application of these methods in real decision problems as well as 

the empirical comparison analysis of difference representations of capacity in 

depicting the same preference information. 
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